

Class Notes on Pythagoras

Theorem

(Chapter 12)

Chapter - 12 English Version

Pythagoras Theorem

In a right angled triangle, the square on the hypotenuse is equal to the sum of the square on the other two sides.

Data: In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$
To prove : $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{CA}^{2}$
Construction : Draw BD $\perp \mathrm{AC}$.
Proof

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADB}$	
$\angle \mathrm{ABC}=\angle \mathrm{ADB}=90^{\circ}$	Data and construction
$\angle \mathrm{BAD}=\angle \mathrm{BAD}$	Common angle
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{ADB}$	Equiangular triangles
$\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AB}}$	
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AC} . \mathrm{AD} \ldots .$. (1)	
$\triangle \mathrm{ABC}$ దుత్తు $\triangle \mathrm{BDC}$ గెళల్లి	
$\angle \mathrm{ABC}=\angle \mathrm{BDC}=90^{\circ}$	Data and construction
$\angle \mathrm{ACB}=\angle \mathrm{ACB}$	Common angle
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{BDC}$	Equiangular triangles
$\Rightarrow \quad \frac{\mathrm{BC}}{\mathrm{DC}}=\frac{\mathrm{AC}}{\mathrm{BC}}$	
$\Rightarrow \mathrm{BC}^{2}=\mathrm{AC.DC} \ldots .$. (2)	
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=(\mathrm{AC} \cdot \mathrm{AD})+(\mathrm{AC} . \mathrm{DC})[\because(1)+(2)]$	
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC} \cdot(\mathrm{AD}+\mathrm{DC})$	
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC} . \mathrm{AC}$	$\mathrm{AD}+\mathrm{DC}=\mathrm{AC}$
$\mathbf{A B}^{2}+\mathbf{B C}^{2}=\mathrm{AC}^{2}$	

"If the square on the longest side of a triangle is equal to the sum of the squares on the other two sides, then those two sides contain a right angle."

Data: In $\triangle \mathrm{ABC}, \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
To Prove: $\angle A B C=90^{\circ}$
Construction: Drqw perpendicular to $A B$ at B. Select a point D on it such that, $D B=B C$. Join
'A' and 'D
Proof:

In \triangle ABD	
$\angle \mathrm{ABC}=90^{\circ}$	Construction
$\therefore \mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$	Pythagoras theorem
But, in	$\triangle \mathrm{ABC}$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$	Given
$\Rightarrow \quad A D^{2}=A C^{2}$	
$\therefore \mathrm{AD}=\mathrm{AC}$	
In \triangle ABD	and $\triangle \mathrm{ABC}$,
$\mathrm{AD}=\mathrm{AC}$	Proved
$B D=B C$	Construction
$\mathrm{AB}=\mathrm{AB}$	Common sides
$\triangle \mathrm{ABD} \equiv \triangle \mathrm{ABC}$	S.S.S.
$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{ABC}$	
ఆదెరె, $\angle \mathrm{ABD}+\angle \mathrm{ABC}=180^{\circ}$	Complimenotry angles
$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{ABC}=90^{\circ}$	

Example 1: In a right angled $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \mathrm{AC}=17 \mathrm{~cm}$ and $\mathrm{AB}=8 \mathrm{~cm}$, find BC
Sol: Given, in $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad[\because$ Pythagoras theorem $]$
$\Rightarrow \mathrm{BC}^{2}=\mathrm{AC}^{2}-\mathrm{AB}^{2}$
$\mathrm{BC}^{2}=17^{2}-8^{2}$
$\mathrm{BC}^{2}=289-64=225$
$\therefore \mathrm{BC}=225 \quad \mathrm{~cm}$

Example2: In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=45^{\circ}, \mathrm{AM} \perp \mathrm{BC}, \mathrm{AM}=4 \mathrm{~B} \mathrm{~cm}$ and $\mathrm{BC}=7 \mathrm{~cm}$. Find the length of AC
In $\triangle \mathrm{AMB}, \angle \mathrm{AMB}=90^{\circ}, \angle \mathrm{ABM}=45^{\circ} \therefore \angle \mathrm{BAM}=90^{\circ}$
AMB is an isosceles right angled triangle
$\therefore \mathrm{MA}=\mathrm{MB}=4 \mathrm{~cm}$
$\mathrm{MC}=\mathrm{BC}-\mathrm{MB}=7-4=3 \mathrm{~cm}$
$\therefore \mathrm{MC}=3 \mathrm{~cm}$
In $\triangle \mathrm{AMC}, \mathrm{AC}^{2}=\mathrm{AM}^{2}+\mathrm{MC}^{2}[\because$ Pythagoras theorem $]$
$\mathrm{AC}^{2}=4^{2}+3^{2}$
$\mathrm{AC}^{2}=16+9$
$\mathrm{AC}^{2}=25$

$\mathrm{AC}=5 \mathrm{~cm}$
Example3:In the rectangle $\mathrm{WXYZ}, \mathrm{XY}+\mathrm{YZ}=17 \mathrm{~cm}$ and $\mathrm{XZ}+\mathrm{YW}=26 \mathrm{~cm}$. calculate the length and breadth of the rectangle.
Sol: XZ + YW = 26 cm
$\mathrm{d}_{1}+\mathrm{d}_{2}=26 \mathrm{~cm}$
$2 \mathrm{~d}=26 \mathrm{~cm}$
$\mathrm{d}=13 \mathrm{~cm}$
$\therefore \mathrm{XZ}=\mathrm{YW}=13 \mathrm{~cm}$
Let length $=\mathrm{XY}=\mathrm{x} \mathrm{cm} \Rightarrow$ breadth $=\mathrm{XW}=(17-\mathrm{x}) \mathrm{cm}$
In $\triangle \mathrm{WXY}$,
$\mathrm{WX}^{2}+\mathrm{XY}^{2}+\mathrm{WY}^{2}[\because$ Pythagoras theorem $]$
$(17-x)^{2}+x^{2}=13^{2}$
$\left(289-34 x+x^{2}\right)+x^{2}=169$

$\left(2 x^{2}-34 \mathrm{x}+120=0\right) \square 2$
$x^{2}-17 x+60=0$
$x^{2}-12 x-5 x+60=0$
$\mathrm{x}(\mathrm{x}-12)-5(\mathrm{x}-12)=0 \Rightarrow(\mathrm{x}-12)(\mathrm{x}-5)=0$
$\Rightarrow \mathrm{x}-12=0$ or $\mathrm{x}-5=0$
$\Rightarrow \mathrm{x}=12$ or $\mathrm{x}=5$
Length $=12 \mathrm{~cm}$, breadth $=5 \mathrm{~cm}$
Example4: An insect 8 m away from the foot of a lamp post which is 6 m tall, crawls towards it. After moving through a distance, its distance from the top of the lamp post is equal to the distance it has moved. How far is the insect away from the foot of the lamp post? [Bhaskaracharya's Leelavathi]
Sol: Distance between the insect and the foot of the lamp post $=B D=8 \mathrm{~m}$.
The height of the lamp post $=\mathrm{AB}=6 \mathrm{~m}$.
After moving a distance, let the insect be at C ,
Let $\mathrm{AC}=\mathrm{CD}=\mathrm{xm}$
$\therefore \mathrm{BC}=(8-\mathrm{x}) \mathrm{m}$.
In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad[\because$ Pythagoras theorem $]$
$x^{2}=6^{2}+(8-x)^{2}$
$x^{2}=36+64-16 x+x^{2}$
$\therefore 16 \mathrm{x}=100$
$\mathrm{x}=6.25 \mathrm{~m}$

$\therefore \mathrm{BC}=8-\mathrm{x}=8-6.25=1.75 \mathrm{~m}$
The insect is 1.75 m away from the foot of the lamp post

Riders based on Pythagoras Theorem

Example5: In the given figure, $\mathrm{AD} \perp \mathrm{BC}$, Prove that $\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}$
In $\triangle \mathrm{ADC}, \angle \mathrm{ADC}=90^{\circ}$
$\therefore \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}[\because$ Pythagoras theorem $]----(1)$
In In $\triangle \mathrm{DBA}, \angle \mathrm{ADB}=90^{\circ}$
$\therefore \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}[\because$ Pythagoras theorem $]-----(2)$
Substracting (1) from (2), we get
$\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{CD}^{2}$
$\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}$

Example6: In $\triangle \mathrm{ABD}, \mathrm{C}$ is the point on BD such that $\mathrm{BC}: \mathrm{CD}=1: 2$ and $\triangle \mathrm{ABC}$ is an equilateral triangle. Prove that $\mathrm{AD}^{2}=7 \mathrm{AC}^{2}$
Sol: Data: In $\triangle \mathrm{ABD}, \mathrm{BC}: \mathrm{CD}=1: 2$
In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{BC}=\mathrm{CA}$
To prove: $\mathrm{AD}^{2}=7 \mathrm{AC}^{2}$
Construction: Draw AE $\perp \mathrm{BC}$
Proof: In $\triangle \mathrm{ABC}$,
$\mathrm{BE}=\mathrm{EC}=\frac{a}{2}$ and $\mathrm{AE}=\frac{a \sqrt{3}}{2}$
In $\triangle \mathrm{ADE}, \angle \mathrm{AED}=90^{\circ}[\because$ construction $]$
$\mathrm{AD}^{2}=\mathrm{AE}^{2}+\mathrm{ED}^{2} \quad[\because$ Pythagoras theorem $]$
$\mathrm{AD}^{2}=\left(\frac{a \sqrt{3}}{2}\right)^{2}+\left(2 a+\frac{a}{2}\right)^{2}$
$\mathrm{AD}^{2}=\frac{3 a^{2}}{4}+\left(\frac{5 a}{2}\right)^{2}$
$\mathrm{AD}^{2}=\frac{3 a^{2}}{4}+\frac{25 a^{2}}{4}$
$\mathrm{AD}^{2}=\frac{28 a^{2}}{4}$
$\mathrm{AD}^{2}=7 \mathrm{AC}^{2}$
B

Numerical problems based on Pythagoras theorem

1. The sides of a right angled triangle containing the right angle are 5 cm and 12 cm , find its hypotenuse.
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\mathrm{AC}^{2}=5^{2}+12^{2}$
$\mathrm{AC}^{2}=25+144$
$\mathrm{AC}^{2}=169$
$\mathrm{AC}=13 \mathrm{~cm}$

2. Find the length of the diagonal of a square of side 12 cm .
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\mathrm{AC}^{2}=12^{2}+12^{2}$
$A C^{2}=144+144$
$\mathrm{AC}^{2}=288$
$\mathrm{AC}=\sqrt{288}$
$\mathrm{AC}=\sqrt{2 \times 144}$
$\mathrm{AC}=12 \sqrt{2} \mathrm{~cm}$

3. The length of the diagonal of a rectangular playground is 125 m and the length of one side is 75 m . Find the length of the other side .

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& 125^{2}=\mathrm{AB}^{2}+75^{2} \\
& 15625=\mathrm{AB}^{2}+5625 \\
& \mathrm{AB}^{2}=15625-5625 \\
& \mathrm{AB}^{2}=10000 \\
& \mathrm{AB}=100
\end{aligned}
$$

4. In $\triangle \mathrm{LAW}, \angle \mathrm{LAW}=9 \mathbf{9 0}^{\boldsymbol{0}}, \angle \mathrm{LNA}=\mathbf{9 0 ^ { \circ }} \mathrm{LW}=26 \mathrm{~cm}, \mathrm{LN}=6 \mathrm{~cm}$ దుత్తు $\mathrm{AN}=8 \mathrm{~cm}$, Calculate the length of WA.
$\triangle \mathrm{LNA}$ యీల్లి, $\angle \mathrm{LNA}=90^{\circ}$
$\therefore \mathrm{LA}^{2}=\mathrm{LN}^{2}+\mathrm{NA}^{2}$
$\therefore \mathrm{LA}^{2}=6^{2}+8^{2}$
$\therefore \mathrm{LA}^{2}=36+64=100$
$\therefore \mathrm{LA}=10 \mathrm{~cm}$
$\triangle \mathrm{LAW}$ నెల్లి, $\angle \mathrm{LAW}=90^{\circ}$
$\therefore \mathrm{WA}^{2}=\mathrm{LW}^{2}+\mathrm{LA}^{2}$
$\therefore \mathrm{WA}^{2}=26^{2}-10^{2}$
$\therefore \mathrm{WA}^{2}=676+100$
$\therefore \mathrm{WA}^{2}=576$
$\therefore \mathbf{W A}=\mathbf{2 4} \mathbf{c m}$
5. A door of width 6 meter has an arch above it having a height of 2 meter. Find the radius of the arch .
In the figure, $\mathrm{OC}=\mathrm{OB}=3 \mathrm{O}_{\mathbf{\jmath}} \mathrm{w}_{\hat{\gamma}}=\mathrm{r}$
$\mathrm{OC}=\mathrm{r}-2$
In $\triangle \mathrm{OMB}, \angle \mathrm{OMB}=90^{\circ}$
\therefore Radius $\mathrm{OB}^{2}=\mathrm{OM}^{2}+\mathrm{MB}^{2}$
$\therefore \mathrm{r}^{2}=(\mathrm{r}-2)^{2}+3^{2}$
$\therefore \mathrm{r}^{2}=\mathrm{r}^{2}-4 \mathrm{r}+4+9$
$\therefore 4 \mathrm{r}=4+9$
$\therefore \mathrm{r}=\frac{13}{4}$

$\therefore \mathrm{r}=3.25 \mathrm{~m}$
6. A peacock on a pillar of 9 feet height on seeing a snake coming towards its hole situated just below the pillar from a distance of 27 feet away from the pillar will fly to catch it. If both posess the same speed, how far from the pillar they are going to meet?

In the figure,Piller $\mathrm{AB}=9$ feet, $\mathrm{BD}=27$ feet, The distance travelled by (Peacock) snake $\mathrm{DC}($ $A C$) $=27-x$
$\mathrm{BC}=\mathrm{x}$ feet
In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\therefore(27-\mathrm{x})^{2}=9^{2}+\mathrm{x}^{2}$
$\therefore 729-54 \mathrm{x}+\mathrm{x}^{2}=81+\mathrm{x}^{2}$
$\therefore 729-54 \mathrm{x}=81$
$\therefore 729-81=54 \mathrm{x}$
$\therefore 648=54 \mathrm{x}$
$\therefore \mathrm{x}=\frac{648}{54}$
$\therefore \mathrm{x}=12$ feet
\therefore Peacock and snake meet 12 feet away from the piller.

Riders based on Pythagoras theorem

1. $\triangle \mathrm{MGN}$ నలల్లి $\mathrm{MP} \perp \mathrm{GN}$. If $\mathrm{MG}=$ ' a ' units, $\mathrm{MN}=$ ' b ' units, $\mathrm{GP}=$ ' c ' units, $\mathrm{PN}=$ ' d ' units But,

Prove that $(a+b)(a-b)=(c+d)(c-d)$.
$\triangle M P G$ యలల్లి, $\angle M P G=90^{\circ}$,
$\therefore \mathrm{MP}^{2}=\mathrm{a}^{2}-\mathrm{c}^{2}$ \qquad
$\triangle M P N$ యuల్లి, $\angle M P N=90^{\circ}$,
$\therefore \mathrm{MP}^{2}=\mathrm{b}^{2}-\mathrm{d}^{2}$ \qquad
$\therefore \mathrm{a}^{2}-\mathrm{c}^{2}=\mathrm{b}^{2}-\mathrm{d}^{2}[$ From 1 and 2]
$\therefore \mathrm{a}^{2}-\mathrm{b}^{2}=\mathrm{c}^{2}-\mathrm{d}^{2}$

$\therefore(\mathbf{a}+\mathbf{b})(\mathbf{a}-\mathbf{b})=(\mathbf{c}+\mathbf{d c})(\mathbf{c}-\mathbf{d})$
2. In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}, \mathrm{BD} \perp \mathrm{AC}$. If $\mathrm{AB}=$ ' c ' units, $\mathrm{BC}=$ ' a ' units, $\mathrm{BD}=$ ' p ' units, $\mathrm{CA}=$ ' b ' units. Prove that $\frac{1}{a^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$
Area $\quad \triangle \mathrm{ABC}=\frac{1}{2} \mathrm{xBCxAB}$
Area $\triangle \mathrm{ABC}=\frac{\mathrm{ac}}{2}$
Area $\triangle \mathrm{ABC}=\frac{1}{2} \mathrm{xACxBD}$
Area $\triangle \mathrm{ABC}=\frac{\mathrm{bp}}{2}$
$\therefore \frac{\mathrm{ac}}{2}=\frac{\mathrm{bp}}{2} \quad$ [From 1 and 2]
$\Rightarrow \mathrm{ac}=\mathrm{bp} \Rightarrow \mathrm{p}=\frac{a c}{b} \Rightarrow \frac{1}{p}=\frac{b}{a c}---$ (3)
Area $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$
$\therefore \mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}$

$\therefore \frac{b^{2}}{a^{2} c^{2}}=\frac{a^{2}}{a^{2} c^{2}}+\frac{c^{2}}{a^{2} c^{2}}$
$\therefore \frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{c}^{2}}+\frac{1}{\mathrm{a}^{2}}$
3. Derive the formula to find the height and area of an equilateral triangles.

In equilateral $\triangle A B C, A M \perp B C$
$\triangle \mathrm{AMC}$ యలల్లి, $\angle A M C=90^{\circ}$,
$\therefore \mathrm{AM}^{2}=\mathrm{AC}^{2}-\mathrm{MC}^{2}$
$\Rightarrow h^{2}=a^{2}-\left(\frac{a}{2}\right)^{2}[\because A D \perp B C]$
$\Rightarrow \mathrm{h}^{2}=\mathrm{a}^{2}-\frac{a^{2}}{4}$
$\Rightarrow \mathrm{h}^{2}=\frac{4 a^{2}-\mathrm{a} 2}{4}$
$\Rightarrow \mathrm{h}^{2}=\frac{3 \mathrm{a} 2}{4}$
$\Rightarrow h=\frac{\sqrt{3} a}{2}$

7 Yakub Koyyur, GHS Nada, Belthangady Tq,Ph:9008983286,Email:yhokkila@gmail.com

Area of $\triangle \mathrm{ABC}=\frac{1}{2} \mathrm{xBCxAM}$
\Rightarrow Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{xa} \times \frac{\sqrt{3} a}{2}$
\Rightarrow Area of $\triangle A B C=\frac{\sqrt{3} a^{2}}{4}$

ILLUSTRATIVE EXAMPLES

Example1: Verify whether the following measures represent the sides of a right angled triangle.
(a) $6,8,10$

Sol: Sides are : 6, 8, 10
Consider the areas of square on the sides : $6^{2}, 8^{2}, 10^{2}$
i.e., $36,64,100$

Consider the sum of areas of squares on the two smaller sides : $36+64=100$
$6^{2}+8^{2}=10^{2}$
We observe that, square on the longest side of the triangle is equal to the sum of squares on the other two sides.
By converse of Pythagoras theorem, those two smaller sides must contain a right angle.
Conclusion: The sides 6,8 and 10 form the sides of a right angled triangle with hypotenuse 10 units and 6 and 8 units as the sides containing the right angle.
Note: Without actually constructing the triangle for the given measurements of sides it is now possible to say whether the sides represent the sides of a right angled triangle using converse of Pythagoras theorem
(b) $4,5,6$

Sides are : 4,5,6
Areas of squares on the sides $\quad: 4^{2}, 5^{2}, 6^{2}$
i.e. : 16, 25, 36

Sum of areas of squares on the two smaller sides: $16+25=41$
$\Rightarrow 4^{2}+5^{2} \square 6^{2}$
We observe that the square on the longest side of the triangle is not equal to the sum of the squares on the other two sides.
By converse of Pythagoras theorem, these two sides cannot contain a right angle. Hence, 4, 5, and 6 cannot form the sides of right angled triangle
Example2: In the quadrilateral $\mathrm{ABCD}, \angle \mathrm{ABC}=90^{\circ}$ and $\mathrm{AD}^{2}=\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}\right)$. Prove that $\angle \mathrm{ACD}=90^{\circ}$
Sol; in $\triangle \mathrm{ABC},, \angle \mathrm{ABC}=90^{\circ}[\because$ data $]$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}[\because$ Pythagoras theorem $]$
But, $\mathrm{AD}^{2}=\left(\mathrm{BD}^{2}+\mathrm{BC}^{2}\right)+\mathrm{CD}^{2}[\because$ data $]$
$\therefore \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}\left[\because\right.$ by data $\left.\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}\right]$
$\therefore \angle \mathrm{ACD}=90^{\circ}[\because$ Converse of Pythagoras theorem $]$

Exercise 12.2

1. Verify whether the following measures represent the sides of a right angled triangle .
(i) $1,2, \sqrt{3}$
(ii) $\sqrt{2}, \sqrt{3}, \sqrt{5}$
(iii) $6 \sqrt{3}, 12,6$ (iv). $\mathrm{m}^{2}-\mathrm{n}^{2}, 2 \mathrm{mn}, \mathrm{m}^{2}+\mathrm{n}^{2}$
(i) $1,2, \sqrt{3}$
$1^{2}=1 ; 2^{2}=4 ;(\sqrt{3})^{2}=3$
$\therefore 2^{2}=1^{2}+(\sqrt{3})^{2}$
\therefore Not a right angled triangle.
(ii) $\sqrt{2}, \sqrt{3}, \sqrt{5}$
$(\sqrt{2})^{2}=2$
$(\sqrt{3})^{2}=3$
$(\sqrt{5})^{2}=5$
$\therefore(\sqrt{5})^{2}=(\sqrt{3})^{2}+(\sqrt{2})^{2}$
\therefore This is right angled triangle
(iii) $6 \sqrt{3}, 12,6$

$(6 \sqrt{3})^{2}=36 \times 3=108$
$12^{2}=144$
$6^{2}=36$
$\therefore 12^{2}=(6 \sqrt{3})^{2}+6^{2}$
\therefore This is right angled triangle.
(iv). $\mathrm{m}^{2}-\mathrm{n}^{2}, 2 \mathrm{mn}, \mathrm{m}^{2}+\mathrm{n}^{2}$
$\left(m^{2}-n^{2}\right)^{2}=\left(m^{2}\right)^{2}+\left(n^{2}\right)^{2}-2 m^{2} n^{2}$
$\left(m^{2}-n^{2}\right)^{2}=m^{4}+n^{4}-2 m^{2} n^{2}$
$\left(m^{2}+n^{2}\right)^{2}=\left(m^{2}\right)^{2}+\left(n^{2}\right)^{2}+2 m^{2} n^{2}$
$\left(m^{2}+n^{2}\right)^{2}=m^{4}+n^{4}+2 m^{2} n^{2}$
$(2 \mathrm{mn})^{2}=4 \mathrm{~m}^{2} \mathrm{n}^{2}$
$\therefore\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right)^{2}=\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right)^{2}+(2 \mathrm{mn})^{2}$
2. In $\triangle \mathrm{ABC}, \mathrm{a}+\mathrm{b}=1$ 8units, $\mathrm{b}+\mathrm{c}=25$ units and $\mathrm{c}+\mathrm{a}=17$ units . what type of $\triangle \mathrm{ABC}$? Give reason.
$a+b=18$
$\mathrm{b}+\mathrm{c}=25$
$\mathrm{c}+\mathrm{a}=17$
$\Rightarrow 2 \mathrm{a}+2 \mathrm{~b}+2 \mathrm{c}=60$
$\Rightarrow 2(\mathrm{a}+\mathrm{b}+\mathrm{c})=60$
$\Rightarrow(\mathrm{a}+\mathrm{b}+\mathrm{c})=30$
$\therefore 18+\mathrm{c}=30 \Rightarrow \mathrm{c}=12$
$a+25=30 \Rightarrow \mathrm{a}=5$
$\mathrm{b}+17=30 \Rightarrow \mathrm{~b}=13$
$\therefore \mathrm{ABC}$ యిల్లి,

$13^{2}=5^{2}+12^{2} \Rightarrow b^{2}=a^{2}+c^{2}$
\therefore This is right angled triangle [Converse of Pythagoras theorem]
3. In $\triangle A B C$, If $C D \perp A B, C A=2 A D$ and $B D=3 A D$, Prove that $\angle B C A=90^{\circ}$.
$\triangle C D A$ యల్లి, $\angle C D A=90^{\circ}$,
$\therefore \mathrm{CD}^{2}=\mathrm{CA}^{2}-\mathrm{AD}^{2}$
$\Rightarrow \mathrm{CD}^{2}=(2 \mathrm{AD})^{2}-\mathrm{AD}^{2}$
$\Rightarrow \mathrm{CD}^{2}=4 \mathrm{AD}^{2}-\mathrm{AD}^{2}$
$\Rightarrow \mathrm{CD}^{2}=3 \mathrm{AD}^{2}$
$\Delta \mathrm{CDB}$ యల్లి, $\angle \mathrm{CDB}=90^{\circ}$,
$\therefore \mathrm{CD}^{2}=\mathrm{CB}^{2}-\mathrm{BD}^{2}$

$\therefore \mathrm{CD}^{2}=\mathrm{CB}^{2}-(3 \mathrm{AD})^{2}$
$\therefore \mathrm{CD}^{2}=\mathrm{CB}^{2}-9 \mathrm{AD}^{2}$
$\therefore 3 \mathrm{AD}^{2}=\mathrm{CB}^{2}-9 \mathrm{AD}^{2}[\because(1)$ దుత్తు
$\therefore \mathrm{CB}^{2}=12 \mathrm{AD}^{2}$
$\mathrm{CA}^{2}=(2 \mathrm{AD})^{2}$
$\Rightarrow C A^{2}=4 \mathrm{AD}^{2}$
$\mathrm{AB}^{2}=(\mathrm{AD}+\mathrm{BD})^{2}$
$\Rightarrow \mathrm{AB}^{2}=(\mathrm{AD}+3 \mathrm{AD})^{2}$
$\Rightarrow \mathrm{AB}^{2}=(4 \mathrm{AD})^{2}$
$\Rightarrow \mathrm{AB}^{2}=16 \mathrm{AD}^{2}$
$\therefore \mathrm{AB}^{2}=\mathrm{CB}^{2}+\mathrm{CA}^{2}[\because$ From (3), (4) and (5) $]$
$\therefore \angle B C A=90^{\circ}$
4. The shortest distance AP from a point A to $Q R$ is 12 cm . ' Q ' and ' R ' are respect tively 15 cm and 20 cm from ' A ' and on opposite side of AP. Prove that $\angle \mathbf{Q A R}=90^{\circ}$
$\triangle \mathrm{APQ}$ నెల్లి, $\angle \mathrm{APQ}=90^{\circ}[\because$ Shortest distance $=\perp]$
$\therefore \mathrm{QP}^{2}=\mathrm{AQ}^{2}-\mathrm{AP}^{2}[\because$ Pythagoras theorem $]$
$\therefore \mathrm{QP}^{2}=15^{2}-12^{2}$
$\therefore \mathrm{QP}^{2}=225-144$
$\therefore \mathrm{QP}^{2}=81------(1)$
$\triangle \mathrm{APQ}$ నలల్లి, $\angle \mathrm{APR}=90^{\circ}[\because$ Shortest distance $=\perp]$
$\therefore \mathrm{PR}^{2}=\mathrm{AR}^{2}-\mathrm{AP}^{2}[\because$ Pythagoras theorem $]$
$\therefore \mathrm{PR}^{2}=20^{2}-12^{2}$
$\therefore \mathrm{PR}^{2}=400-144$
$\therefore \mathrm{PR}^{2}=256----(2)$
$\mathrm{AQ}^{2}=15^{2}=225$
$\mathrm{AB}^{2}=20^{2}=400$
$\mathrm{QR}^{2}=(\mathrm{QP}+\mathrm{PR})^{2}$
$\mathrm{QR}^{2}=\mathrm{QP}^{2}+\mathrm{PR}^{2}+2 \mathrm{QP} . \mathrm{PR}$
$\therefore \mathrm{QR}^{2}=81+256+2 \times 9 \times 16$
$\therefore \mathrm{QR}^{2}=81+256+288$
$\therefore \mathrm{QR}^{2}=625$
$\therefore \mathrm{QR}^{2}=\mathrm{AQ}^{2}+\mathrm{AB}^{2}[\because$ From (3),(4) and (5) $]$
5. In the isosceles $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}, \mathrm{BC}=18 \mathrm{~cm}, \mathrm{AD}=12 \mathrm{~cm}, \mathrm{BC}$ is produced to ' E ' and AE $=20 \mathrm{~cm}$. Prove that $\angle B A E=90^{\circ}$.
$\triangle \mathrm{ABC}$ యిల్లి, $\mathrm{AB}=\mathrm{AC}, \mathrm{BC} \perp \mathrm{AD}$
$\therefore \mathrm{BD}=\mathrm{CD}=9 \mathrm{~cm}$
In $\triangle \mathrm{ADC}, \angle \mathrm{ADC}=90^{\circ}$
$\therefore \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}[\because$ Pythagoras theorem $]$
$\therefore \mathrm{AC}^{2}=12^{2}+9^{2}=144+81$
$\therefore \mathrm{AC}^{2}=225$
$\therefore \mathrm{AB}^{2}=225$
$\mathrm{AE}^{2}=20^{2}$
$\mathrm{AE}^{2}=400$
$\therefore 20^{2}=12^{2}+\mathrm{DE}^{2}[\because$ Pythagoras theorem $]$
$\therefore 400=144+\mathrm{DE}^{2}$
$\therefore \mathrm{DE}^{2}=256$

$\therefore \mathrm{DE}=16 \mathrm{~cm}$
$\therefore \mathrm{BE}=\mathrm{BD}+\mathrm{DE}$
$\therefore \mathrm{BE}=9+16=25 \mathrm{~cm}$
$\therefore \mathrm{BE}^{2}=625$
In $\triangle \mathrm{ABC}$,
$\therefore \mathrm{BE}^{2}=\mathrm{AB}^{2}+\mathrm{AE}^{2}[\because$ From (1), (2) and (3) $]$
$\therefore \angle \mathbf{B A E}=90^{\circ} \quad[\because$ Converse of Pythagoras theorem.]
6. In the quadrilateral $\mathrm{ABCD}, \angle \mathrm{ADC}=90^{\circ}, \mathrm{AB}=9 \mathrm{~cm}, \mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=\mathrm{AD}=6 \mathrm{~cm}$ and $\mathrm{CD}=$ 3 cm , Prove that $\angle \mathrm{ACB}=90^{\circ}$.
$\triangle \mathrm{ADC}$ యల్లి, $\angle \mathrm{ADC}=90^{\circ}$
$\therefore \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}[\because$ Pythagoras theorem. $]$
$\therefore \mathrm{AC}^{2}=6^{2}+3^{2}$
$\therefore \mathrm{AC}^{2}=36+9=45$
$\mathrm{AB}^{2}=9^{2}=81$
$\mathrm{BC}^{2}=6^{2}=36----(3)$
$\therefore \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}[\because$ From (1), (2) and (3) $]$
$\therefore \angle \mathrm{ACB}=90^{\circ}$ [\because Converse of Pythagoras theorem]

$7 . \mathrm{ABCD}$ is a rectangle. ' P ' is any point outside it such that $\mathrm{PA}^{2}+\mathrm{PC}^{2}=\mathrm{BA}^{2}+\mathrm{AD}^{2}$. Prove that $\angle \mathrm{APC}=90^{\circ}$.
ABCD is a rectangle
$\therefore \mathrm{AC}^{2}=\mathrm{DC}^{2}+\mathrm{AD}^{2}$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{BA}^{2}+\mathrm{AD}^{2}[\because \mathrm{BA}=\mathrm{DC}]$
But, $\mathrm{PA}^{2}+\mathrm{PC}^{2}=\mathrm{BA}^{2}+\mathrm{AD}^{2}$
$\therefore \mathrm{PA}^{2}+\mathrm{PC}^{2}=\mathrm{AC}^{2}$
$\therefore \angle \mathrm{APC}=90^{\circ}[\because$ Converse of Pythagoras theorem $]$

